Decision and Cost-Effectiveness Analyses of Herpes Zoster Vaccination in Adults 50 Years of Age and Older

Ismael Ortega-Sanchez, PhD

National Center for Immunization and Respiratory Diseases Centers for Disease Control and Prevention

Advisory Committee on Immunization Practices Herpes Zoster Work Group October 23, 2013

National Center for Immunization & Respiratory Diseases

Division of Viral Diseases

DISCLAIMER

- Funding: This research was completed while the author was an employee of the US Centers for Disease Control and Prevention (CDC).
- Financial disclosure: No financial relationships relevant to this presentation.
- Conflict of interest: No conflict of interest
- Disclaimer: The findings and conclusions expressed are those of the author and do not necessarily represent the official views of the Centers for Disease Control and Prevention (CDC) or the Department of Health and Human Services (DHHS).
- Peer reviewed: Following "Guidelines for economic analyses to be presented to the ACIP"

Outline

- Policy Questions
- Decision and Cost Effectiveness Model
- Selected parameters and assumptions
- Base case results
- Sensitivity and Scenario analyses
- Discussion

Policy Questions

What is the optimal age to recommend a single dose of zoster vaccine in adults 50 or older?

- 1. From a public health perspective: at what age would vaccination have the greatest population impact?
- 2. From an economic perspective: at what age would vaccination produce the greatest value?

Decision and Cost Effectiveness Model Overview

Objective:

- To evaluate the cost effectiveness of one dose of zoster vaccine administered at age 50, 60, or 70 vs. no vaccination
- Approach: Cohort-based decision analysis model
- **Population:** *Immunocompetent 50+ years of age*
- Analytic horizon: Followed to mean life expectancy
- Perspective: Societal

Decision Analysis

Primary Outcomes

Quality Adjusted Life Years (QALYs) gained
 Cost per QALY saved

Secondary Outcomes

Cost per outcome averted:

 Cost per case of HZ
 Cost per case of PHN

 Number needed to vaccinate in order to avert:

 One case of HZ

One case of PHN

SELECTED PARAMETERS AND ASSUMPTIONS

Herpes Zoster Incidence

Based on various sources, 1982-2011

Proportion of HZ with PHN and Non-Pain Complications

Source: Yawn 2007

Vaccine Characteristics by Age Group Mean (95% Cl)

• Efficacy for prevention of HZ

For age 50-59yrs For age 60-69yrs For age 70+ yrs 69.8% (54.1% 80.6%)63.9% (44.2% 75.0%)37.6% (22.1% 57.6%)

- Efficacy for prevention of PHN (≥ 90 days)
 - For age 60-69yrs64.9% (20.4% 86.7%)For age 70+ yrs66.7% (43.3% 81.3%)
- Vaccine AEs
 50-59yrs
 60+ yrs

Local reactions 49.5% (48%-50%) 31.7% (28%-33%) Fever/Systemic 2.0% (0.7%-3.2%) 1.4% (0.3%-2.5%)

Other Assumptions

- QALY loss calculated from
 - Duration of pain
 - Pain intensity
 - Health utility from various health states
- No recurrent HZ
- Age-specific health-related quality of life correction used (HUI-III)
- Direct and Indirect costs of HZ and PHN
 - Costs for acute phase of HZ
 - Costs for non-pain complications
 - Long-term costs for PHN
 - Work loss to pain and productivity loss to death
- **Discount rate for all costs (and health outcomes in ratios), 3%**

Cost of Vaccination

Vaccination coverage assumed 100%

□ Vaccine cost based on 2013 private sector prices

\$165/dose* + \$AEs** + \$20 Adm*** (≈\$190 per vaccinee)

CDC Vaccine Price List (June 2013)

http://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/pricelist/index.html

Cost of AE's used age-specific rates multiplied by direct medical cost for AE (\$11 per Dr phone call for locals reactions or \$115 per medical visit for systemic reactions)

Cost of vaccine administration \$20 (range \$15-\$50)

BASE CASE RESULTS

Preliminary

Analytic Approach (1)

At what age would vaccination have the greatest population impact?

- 4 cohorts of 1M people, all followed from the age 50 years
 - Not vaccinated at all
 - Vaccinated at age 50
 - Vaccinated at age 60
 - Vaccinated at age 70

Cumulative Number of HZ Cases by Vaccination Strategy

Cumulative Number of PHN* Cases by Vaccination Strategy

* PHN = moderate to severe pain lasting more than 90 days

Outcomes <u>Prevented</u> Compared to No Vaccination Program

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
# HZ cases	19,765 (9.9%)	26,147 (15.0%)	21,269 (15.2%)
# PHN cases	1,012 (3.7%)	<mark>4,045 (</mark> 15.0%)	<mark>8,055 (</mark> 31.4%)
# Deaths	0.2 (0.3%)	<mark>0.7</mark> (1.0%)	2 (2.2%)

Ambulatory Visits	37,839	89,169	133,128
ED Visits	8,940	8,193	12,317
Hospitalizations	435	1,492	2,535
# Days in hospital	678	6,693	10,666
# Prescriptions	46,516	90,964	126,357
Lost work (hours)	625,817	506,110	413,058

Analytic Approach (2)

At what age would vaccination produce the greatest value?

 What is the costeffectiveness of vaccinating a cohort of adults 50 years old versus a cohort of adults 60 years old versus a cohort of adults 70 years old compared to *no* vaccination in these cohorts?

<u>Savings</u> in Costs and QALYs from Vaccination Compared to No Vaccination Program (All costs in *thousands and discounted at 3%*)

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
Direct medical costs	\$7,307	\$15,858	\$23,726
Direct non-medical costs	\$319	\$1,188	\$1,909
Indirect costs	\$9,241	\$7,274	\$6,329
Total costs	\$16,867	\$24,319	\$31,964
QALYs saved*	948	2,609	4,780

* Discounted at 3%

Costs of Vaccination Program by Strategy (All costs in *thousands and discounted at 3%*)

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
Dose + Adm	\$185,000	\$185,000	\$185,000
Local reaction	\$5,898	\$3,694	\$3 <i>,</i> 694
Fever/systemic	\$2,300	\$1,610	\$1,610
TOTAL	\$193,198	\$190,304	\$190,304

Cost-Effectiveness Summary by Strategy (Societal Perspective)

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
Net cost*	\$178.5 Million	\$169.0 Million	\$162.9 Million
Cost per HZ prevented	\$11,255	\$8,455	\$9,989
Cost per PHN prevented	\$61,084	\$19,761	\$9,607
Cost per QALY saved **	\$271,713	\$79,967	\$38,191

NC = Cost of Vaccination Program - Savings in Cost-of-Illness from Vaccination

Average Number Needed to Vaccinate by Strategy

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
One HZ case	51	38	47
One non-PHN complication	632	425	321
One PHN case	988	247	124
One QALY	938	339	187

SENSITIVITY & SCENARIO ANALYSES

Preliminary

Selected Parameters for Scenario Analyses

Duration of vaccine efficacy

- Upper and lower 95% CI from SPS, STPS & LTPS data
- Vaccine efficacy for PHN in 50-59 year olds
 - Assuming same efficacy reported for PHN in 60-69 year olds

Patient perspective for QALYs

 Patient responses on health state evaluations from Zoster Utility Evaluation project

Vaccine effectiveness for prevention of HZ

Observational study in a HMO (Tseng et al. JAMA 2011)

Cost-Effectiveness Selected Scenario Analyses

	Vaccinate at 50	Vaccinate at 60	Vaccinate at 70
Base-case	\$271,713	\$79,967	\$38,191
Duration of Vaccine Efficacy - <i>Lower 95%Cl</i>	\$802,356	\$215,034	\$103,886
Duration of Vaccine Efficacy – <i>Upper 95%Cl</i>	\$227,168	\$69,113	\$32,864
Vaccine Efficacy for PHN in 50-59 year olds	\$226,186	\$80,005	\$38,210
Patient perspective for QALYs	\$222,380	\$66,906	\$31,991
Vaccine <i>Effectiveness</i> for HZ	\$336,073	\$95,349	\$34,739

Study Limitations

Uncertain duration of vaccine protection against HZ and PHN

- Limitations in LTPS results due to lack of concurrent control group
- Longer protection against PHN could increase attractiveness of earlier vaccination
- Duration of protection in ≥60 year olds assumed for all ages
- QALY-loss due to mild, moderate, and severe adverse events among vaccine recipients not included
 - Including this could increase attractiveness of later vaccination
- HZ incidence rates may be increasing over time
 - This may increase attractiveness of later vaccination
- Uncertainty in QALY loss due to HZ and its complications
 - Can affect results for our policy question in any direction
 - Results of scenario analysis increase confidence somewhat

Study Strengths

- Includes data on duration of protection through 11 years after vaccination
- Updated assumption of key parameters based on recent studies relating to zoster and zoster vaccine

Conclusions

Substantially greater reduction of disease burden, healthcare utilization, and costs are achieved with vaccination at age 70 or 60 compared to vaccination at age 50

Results were robust, based on:

- Magnitude of the differences among vaccination strategies
- Consistency of public health & economic perspectives
- Consistency of results from scenario analyses

These conclusions are consistent with those found in other published analyses

DISCUSSION

Extra Slides

Health and Healthcare Utilization Outcomes

QALYs Estimation by Pain Duration and Intensity

QALYs lost per episode:

QALYs shingles = $(t/365) * [1-Pain Score_{(t, i)}] * Shingles_{(t, i)}$

QALYs $_{PHN} = (t/365) * [1-Pain Score_{(t, i)}] * PHN_{(t, i)}$

Where:

- t/365 = Time lasting of episode as fraction of time of a year (time in days divided by 365)
- Pain Score (t, i) = Score observed for pain lasting t days and with intensity i,
 (i= 0, ..., 10; where 0 no pain and 10 worst pain)*
- Shingles (t, i) = Percent of shingles cases with pain duration t (in days) and with intensity i.
- PHN (*t*,*i*) = Percent of PHN cases with pain duration *t* (*in days*) and pain intensity *i*.
 - * ZUE project (Lieu et al Pharmacoeconomics 2008)

HZ Incidence for Vaccinated Cohort For each age group:

 $HZDI_{vacc} = HZDI_{no vacc} * [1-(Residual_t * VEff_{age})]$

Where:

HZDI_{vacc}

HZDI_{no vacc}

 \Box Residual_t

- = HZ incidence in vaccinated cohort
- = HZ incidence in non-vaccinated cohort
- = Residual vaccine efficacy (0-100%) t years after vaccination t=0,...,T

□ VEff age

= Age-specific vaccine efficacy

QALY Calculations: *pain duration* x *intensity*

Economic Analysis: Net Cost

We calculated net cost (NC) for vaccinated and unvaccinated cohorts according to the following formula:

$$NC = \sum_{t=0}^{T} \frac{C_t - B_t}{(1+r)^t}$$

Where:

- C = cost of the vaccination program (including cost of adverse events)
- B = benefits (savings in cost of illness prevented with vaccination program)
- □ *t* = time in years after immunization (*t*=0, 1, 2,...*T*)
- r = discount rate (3%)
- T = Analytical horizon (age-specific, in years)

Economic Analysis: Cost-Effectiveness

We calculated cost-effectiveness ratios (CE) according to the following formula:

$$CE = \frac{NC_{vacc} - NC_{unvacc}}{\sum_{t=0}^{T} \frac{(HO_{vacc} - HO_{unvacc})}{(1+r)^{t}}}$$

Where:

- NCvacc = Net cost of vaccination strategy
- NCunvacc = Net cost of baseline (no vaccination) strategy
- HOvacc = Health outcome of vaccination (ex., QALYs, LYs)
- HOUNT HOUNT HEALTH OUTCOME OF BASELINE (NO VACCINATION)
- t = time in years after immunization (t=0, 1, 2,..., T)
- r = discount rate (3%)
- T T= Analytical horizon (age-specific, in years)